
 

Abstract 
The paper “Using Rescheduling and Flexible Execution to 
Address Uncertainty in Execution Duration for a Planetary 
Rover” [Agrawal et al. 2019] discusses several rescheduling 
and execution techniques to allow a scheduler to respond 
effectively to changes in execution, such as activities ending 
earlier or later than expected. We discuss these techniques 
both theoretically and practically in the context of limited 
CPU, nonzero runtime, embedded scheduler intended for 
NASA’s next planetary rover.  

1 Introduction 
The paper summarized by this extended abstract [Agrawal 
et al., 2019] subsumes the paper titled “Embedding a 
Scheduler in Execution for a Planetary Rover” [Chi et al. , 
2018] which was accepted to ICAPS 2018. The previously 
accepted paper [Chi et al., 2018] discusses the rescheduling 
methods and includes some discussion of Flexible 
Execution. However, it does not include discussion of 
activities taking longer than expected. 

 In the current paper, in addition to the rescheduling 
methods, we present two algorithms to address how to 
handle activities running long. Furthermore, the empirical 
results we present in the current paper are more extensive 
both because more realistic inputs have become available 
since the submission of the previous paper and the current 
results include analysis based on additional factors such as 
the scheduler taking less time to run than expected and 
activities taking longer than expected. We also include 
significantly more detailed empirical analysis on how well 
our defined computation model to measure performance 
applies to our problem inputs, as well as which factors 
contribute to the inaccuracy of the theoretical model as it 
applies to our inputs.1 
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2 Goal of the Scheduler 
The goal of the scheduler [Rabideau and Benowitz, 2017] is 
primarily to schedule all activities and secondly to schedule 
activities such that the schedule has the shortest possible 
makespan, where the makespan is the difference between 
the latest time an activity is scheduled to end and the earliest 
time an activity is scheduled to start. A shorter makespan 
implies more resources such as time, energy, and data 
volume are freed.  

3 Non-zero Scheduler Runtime 
Since the scheduler is invoked multiple times during 
execution to generate updated schedules and has a nonzero 
runtime, we must know what to execute while the scheduler 
is running. We choose to use the concept of a commit 
window to execute activities based on the previously 
generated schedule. The commit window is in interval of 
fixed duration from the current time and any activity whose 
scheduled start time is within the commit window is 
committed and cannot be rescheduled by the scheduler. We 
use a commit window that is equal to the predicted 
scheduler run time, Tsc_p. So, even if the scheduler takes less 
time than expected to run, it cannot reschedule to start 
activities earlier than now + Tsc_p. We apply a high margin 
so we assume the scheduler will not take more time than 
expected to run.  

4 Framework for Analysis 
The framework we use to quantify the performance of the 
rescheduling and Flexible Execution methods quantifies 
how the techniques are able to reduce the makespan by 
mitigating two kinds of losses which result in unusable time 
and a longer makespan: 
• Scheduler runtime loss- the time that the scheduler is  
    unable to recoup while the scheduler is running 
• Scheduler invocation loss- the time lost due to waiting to 
    reinvoke the scheduler (e.g. not invoking the scheduler  
    immediately after an activity ends early) 
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5 Rescheduling Methods 
We discuss two rescheduling methods. Using Fixed 
Cadence Scheduling, the scheduler is invoked periodically 
every C seconds. Since the scheduler is invoked at a 
predetermined time using this method, it is often unable to 
react effectively to changes in execution, resulting in both 
scheduler runtime loss and scheduler invocation loss. Using 
Event Driven Scheduling, the scheduler is invoked in 
response to changes in execution (e.g. if an activity ends 
later or earlier than expected by some threshold or if it is 
vetoed and removed from the current schedule to be 
considered in the next scheduler invocation). Since the 
scheduler is invoked immediately after an activity ends 
early, scheduler invocation loss is eliminated if the threshold 
for Event Driven Scheduling is set accordingly.  

6 Flexible Execution 
We discuss Flexible Execution (FE) as a method to update 
start times of activities when the scheduler is not running. 
We discuss two FE algorithms, Extended Veto and Extended 
Push. Both algorithms perform the same when activities end 
earlier than expected but they vary when activities run late. 
We use the concept of a dispatch window, a fixed amount of 
time after Now. FE is only able to modify start times of 
activities which are scheduled to start within the dispatch 
window. We also use the predecessor-successor 
relationships between activities, which affect whether 
activity start times can be adjusted. The predecessor-
successor relationship (e.g. Activity A must complete 
successfully before Activity B starts) is one of relative 
ordering between activities that share the same unit 
resources or establish precedence between one another. 
 

6.1 Extended Push 
We discuss how FE handles activities running late. Using 
the Extended Push algorithm, if a predecessor activity runs 
long, then the start time of the successor activity is pushed 
until the predecessor activity completes or until an 
execution time constraint (dictating the time windows 
during which the activity is allowed to occur) is violated. If 
multiple consecutive activities must be pushed because they 
are in a chain of predecessor-successor relationships, then 
the chained activities will continue to be pushed as long as 
execution constraints are not violated.   
 

6.2 Extended Veto  
 
Using the Extended Veto algorithm, the successor activity 
will be pushed up to some amount, M, but it may also be 
vetoed under certain conditions.  

7 Empirical Evaluation 
In order to evaluate each of the strategies, we apply them to 
various sets of inputs called sol types comprised of activities 
and their constraints. Sol types are currently the best 

available data on expected Mars 2020 rover operations. We 
use the M2020 surrogate scheduler to construct a schedule 
from the inputs and simulate execution. The surrogate 
scheduler is the same implementation as the M2020 onboard 
scheduler but runs much faster as it is intended for a Linux 
workstation. We use 8 different sol types where each sol 
type contains between 20 and 40 activities.  Since data from 
MSL indicates that activities completed on average 28 
percent early, for our model to determine activity execution 
durations, we choose from a normal distribution where the 
mean is 72 percent of the original, predicted duration 
([Gaines et al., 2016], [JPL, 2017]). The standard deviation 
determines the percentage of activities that will take longer 
to execute than expected.  

7.1 Conclusions from Analysis 
From our analysis we conclude that Event Driven 
scheduling with Extended Push FE algorithm results in the 
highest percentage of activities successfully executed when 
the number of activities that longer than expected is varied. 
When activities never take longer than expected, Event 
Driven scheduling with either FE algorithm results in the 
highest makespan gain.  

Using our computational model for scheduler 
runtime and invocation loss, we find that Fixed Cadence 
Scheduling results in the lowest makespan gain and the 
most loss. Event Driven scheduling decreases both 
scheduler runtime and scheduler invocation loss compared 
to Fixed Cadence scheduling and FE with Event Driven 
scheduling further reduces scheduler invocation loss. We 
also conclude that execution time constraints (earliest and 
latest times activities are allowed to start), setup activities 
(required activities such as preheats that must occur before 
the activity), and parallel activities (activities not in the 
critical path) contribute to the inaccuracy of our 
computational model for scheduler runtime and invocation 
loss. Removing these factors from the sol types result in an 
accurate model. 
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